T UM

INSTITUT FUR INFORMATIK

Compatibility and reuse in component-based
systems via type and unit inference

Christian Kihnel, Andreas Bauer, Michael Tautschnig

TUM-10716
Mai 07

TECHNISCHE UNIVERSITATMUNCHEN

TUM-INFO-05-10716-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©2007

Druck: Institut f ur Informatik der
Technischen Universit at Munchen

Compatibility and reuse in component-based systems
via type and unit inference*

Christian Kuhnet Andreas Bauér' Michael Tautschnity

Dlnstitut fur Informatik, Technische Universit Minchen
2)National ICT Australia (NICTA), Canberra

Abstract the level of abstraction for many designs, and development
time is often reduced.

In many branches of industry, the component-based ap- However, this convenience comes at a price; that is, the
proach to systems design is predominant, e. g., as in embeddeveloper has to make sure that reused components are
ded control systems which are often modelled using MAT-compatible in the context they are used in. For large, real-
LAB/Simulink. In order to facilitate reuse, and to raise world designs as they are common, e.g., for automotive
the level of abstraction for future designs and frequently control systems like adaptive cruise control, engine man-
used functions, the employed tool sets offer built-in mech-agement, or electronic brake systems, reuse is often con-
anisms to create sophisticated component libraries. For strained by the ability to establish firm criteria for ensgri
large, real-world designs, however, it is not always clear, compatibility of reused components with respect to the rest
whether or not a certain context violates even the most ba-of a complex design, i. e.,@ntext
sic design assumptions of employed library components,
thus often leading to expensive runtime errors. This pa-
per introduces a practical method for checking compatibil- Contribution. In this paper, we focus on establishing a
ity of large designs, statically. This method not only en- criterion for syntactic compatibilityi.e., a criterion that
sures that large component-based designs provide a contex¢an be checked at compile-time and without executing the
such that all (library) components have well defined types, Component-based design under scrutiny. In the context of
but it also ensures that transmitted physical units, such asSOme of our industrial research collaborations, comgatibi
m?2, km/h, mph, etc. are preserved during computation. ity checking has been reduced to a problertype inference

As such the possibility for runtime errors is reduced, and for which a comprehensive theory already exists (cf. [13]),
a metric for sound component reuse given. and which can be greatly automated and tool-supported. We

say that a given design is compatible w.r.t. its employed
library components iff (1.) a well-typed design can be in-
ferred from it, and (2.) the inferred types do not violate
1 Introduction a set of predeterminecheasurement unitsMeasurement
units (see Sec. 4) play an important role in domains where
systems control physical processes, e.g., for ensurirtg tha
Component-based approaches to software and systemsignals are interpreted correctly by another system or com-
design are predominant in large parts of industry, such asponent. Therefore, decidable polymorphitype system
automotive and embedded control systems in general. Tookor a custom component language is introduced that can be
chains used in these domains are often based on MAT-ysed to infer for a concrete design its types and according
LAB/Simulink, a graphical modelling and simulation envi- measurement units, and determine compatibility. However,
ronment with the ability to generate code (via program ex- this type system and inference algorithm is not restricted
tensions). MATLAB/Simulink and other tools further sup- to our language, but can be applied to similar component-
port the creation and use of dedicated component librarieshased formalisms, e. g., MATLAB/Simulink at ease.
such that frequently used functionality can be reused indif | the context of our current projects, our approach to
ferent contexts, and without having to concentrate onimple compatibility testing has proven to be a reliable metric not
mentation details. As such, the reuse of components raisegn|y in terms of establishing type compatibility of large de
signs and component libraries, but also as a means of avoid-
*This report is an extended version of [10]. ing type errors in the running program and the code gener-

ator of our component language. An implementation of our 2 SCL—A simple component language

method would exhibit only linear runtime in the number of

dESign artifacts due to the use of Standalm'ficationalgo- In the fo"owing, we introduce a Simp]e component lan-

rithms (cf. [9]) for inference. Moreover, not only type cor- guage, SCL, that provides the essential mechanisms for sys-

rectness can be established formally, but also compafibili - tems modelling and analysis. Conceptually, SCL is close to

between the measurement units of a design. other graphical modelling formalisms, such as UML-based
ones, or MATLAB/Simulink, but its semantics is based
upon a uniform discrete time-base and the hypothesis of

Related work. Most tools which support a component or perfect-synchrony [2]. This basically asserts that compu-

model-based design approach, and which are currently usegations of components occur instantly, i.e., take no time,

in the domain of embedded control systems, do not offer ad-and that communication is infinitely fast. This allows us to

vanced concepts for type checking, let alone type inference gpstract from implementation details when modelling, and

The authors of this text believe that the reason lies in thatcaters for a sound and well-defined semantics. Various tools

these systems target rather low-level design artifactsh su for systems design and synthesis exist that are based on this

as the design of continuous control algorithms, and abstrac notion, e. g., SCADE [5], Esterel [3], and AutoFocus [4].

tion from this level of detail has not been the primary focus In the f0||owing the syntax and semantics of SCL are

of the developers for a long time. introduced. The syntax is required for the definition of the

The concept of measurement units in combination with typing rules (see Sec. 3.1), the semantics for the safetf pro

a strong static type system, however, caters for comprehen{see Sec. 3.2).

sible designs, and avoids errors in the actually running sys

tems. Moreover, they facilitate the reuse of components, 2.1 Concepts and syntax

and give to the user a powerful tool for combining different

library components in different contexts without violafin Basically, SCL provides the following core concepts for
assumptions over measurement units or data types, and nghodelling: (functional) blocks, ports and channels for eom
being aware of it. munication, (composite) components, all of which are ex-

Currently, MATLAB/Simulink does not offer strong plained in the following.
static type checking, and subsumes mostly basic data types
such ashoolean anddouble which, if not specified at
“compile-time”, may create runtime errors due to maltyped
designs; that is, if nothing is explicitly specified for a com
ponent, therdouble is used as a “default type” for input
and output signals (cf. [5, 1]). The situation is a similaeon
for other domain-specific solutions such as ASCET-SD.

However, various authors have concentrated on estab-
lishing behavioural correctnessf low-level designs. A
popular formalism arénterface automatd6]. These can Figure 1. An example SCL model
be used for the specification of behaviour at component in-
terfaces, and to establish compatibility between compound A block is a “primitive” component whose functional-
interfaces by means of automata analysis. One of the re4ty is defined by the semantics of SCL. It cannot be de-
search tools already making use of this is, e.g., Ptolemycomposed further. For instance, the predefined arithmetic
I [11]. The static part of Ptolemy’s type system, however, block plus simply adds two variables, which are delivered
is rather different from the approach presented in thispape to it via two input ports (see Fig. 1). Further, a dedicated
in that the behaviour of Ptolemy Il components (called “ac- delay block (i. e.,z—') is used to store values for one com-
tors”) is tightly interwoven with Java code. Therefore,@yp putational cycle, and essential for avoiding causal loops i
correctness is partly handled by the Java compiler, and Javahe model. Hence its value gets updated periodically, and
is known to leave space for subtle type errors at runtime. needs to be initialised to a default value when invoked for

Our custom language, in the next section introduced asthe first time. For brevity, only some predefined blocks are
SCL, handles type inference at compile time and avoids discussed here.
such problems altogether. To the best of the knowledge of A block has a signaturé and parameters depending
the authors, no other component-based design language foon the type of block, e.g., théelay block delay((p; —
the development of embedded control systems currently of-p,), v) has an initial valuev. (Composite) components,
fers the combination of polymorphic type and measurementdenoted component((S), ch, C, ®), are composed of a
unit inference as well as a decidable, static type system. nonempty set of subcomponend§ and a nonempty set

of channelsch, and have a well-defined signatuge =
Pt it — pgut o pot that is made up of its
outside-visible input and output ports. The type context
is used to introduce new type variables.

The syntax of SCL is defined in Fig. 2 and Fig. 3.

p port

v value

T type

I' type context

Figure 2. Syntax of SCL— primitive elements

2.2 Operational semantics

In order to substantiate the claims made in Sec. 1, we

briefly introduce an operational semantics for SCL. This

provides for a concrete type context when reasoning about

type safety, and consequently compatibility of component-
based designs in SCL.

The notation for the operational semantics used here is

loosely based on the one presented by Plotkin [14]. The
rules are displayed in Fig. 4. The current state of a sys-
tem is denoted by, and the history by (i. e., the previous
state). This differentiation is important especially indeof
thedelay block which stores values for exactly one compu-
tational cycle. We fix a set of port8, and a set of channels
ch, as well as a domain of valud$ which are transmit-
ted via ports and channels. Lgt,p: € P andc € ch,
thenc = chan(py — p2) indicates that a pont; is con-
nected withp, via channek. Further, we use the notation
o(p) € V for “retrieving” a value currently associated to a
portp € P, ando[v/p] for “storing” it in the state (respec-
tively with 7). To avoid conflicts i andr, the identifiers

Additionally, the ord-function formally “splits” every
delay (S-delay) into a load parelay;, and a store part,
delays. The load part is placed at the beginning of the eval-
uation order, and the store part at the end. This ensures that
the delayed values of the last step are available to all com-
ponents and that the current values of the delays are stored.

The remaining components and the channels are sorted
in their evaluation order. Let € C be some component,
and let/(c) denote the set of input ports efandO(c) the
output ports, respectively, then a partial orders defined
as follows: For two componenisc € C, and for every
channelchan(p, — p;) € ch, ¢ < chan(p, — p;) < ¢
iff p, € O(c) andp; € I(¢'). Since no cyclic connections
without adelay are allowed,< delivers a partial order on
model entities, returned hyrd.

Let ; be the functional sequence operator. Then, an or-
dered sequence es of entities is evaluated by evaluating
the first element of the sequence, delivering a new val-
uation sequence’ and history sequencg’. These new
sequences are then used for recursive evaluation of the
remainder of the entity sequenes as depicted in rule
(S-seq).

The store part of a delay takes the value V' of the in-
put portp; € P and stores it in the histonyfor the next cy-
cle (S-delay-store). In the first cycle, whefp) = L, i.e.,
the port is not yet bound i, the load part of delay block
returns its default value (S-delay-nohist). In the conseeu
steps, it returns a valug, € V' storedn (S-delay-hist).

As expected, a channel simply propagates the value of
one port to the other port (S-chan).

Execution of blocks. Let in what follows,p,, py, p. € P
andv € V. A plus block is evaluated in (S-plus) by adding
the values of the input porfs, andp, and binding the result

of all ports and delays of a model are assumed to be uniqueto the output porp.. As we are using existential types for

Finally, we introduce an artificial functioord : 28 —
2 which, for a given set of entities, returns a partially or-
dered set of entities that defines their order of execution,
where E = C U ch andC is the set of components con-
nected over the set of channels. Before a component

type abstraction, (see Sec. 3.1), fhles-Operator of the
respective type is applied. The rules for other blocks such
asminus, mult, div, and, or, etc. are similar. An entry

[of an existentially typed value can be accessed hyl
(S-rcd).

can be evaluated, the input ports have to be assigned their The evaluation of a conditional blockf, depends on the
values. For the system, this has to be provided by the en-value of portp.: if o(p.) = true then the value of the port

vironment, within a component this is ensured by tié
function.

In the first computational cycle (i. e., at the beginning of
execution), the history is empty, = (. In the following
cycles, the history of step is used to compute step+ 1.

Order of execution and causality The values of a com-

ponent (S-comp) are defined according to its subcompo-

nents and channels. The execution order of the individ-

pq is assigned to the result part (S-if-true), otherwise the
value of portp, is used (S-if-false).

3 Compatibility in SCL designs

Compatibility checking in SCL is reduced to three key
aspects all of which can be checked statically and automat-
ically:

ual subcomponents and channels is determined by function 1. Type inference, i. e., inferring the appropriate types fo

ord.

an under-specified model, if syntactically possible.

S:= p,...,pr—op,.., P signature

ch = chan(p,p) channel

E = entities
C component
ch channel

C:= components
component((S),2¢,2°" I,T') hierarchical component
B block

B:= blocks
delay((5),v) delay block
const(p,v) constant
plus(S) plus block

1f block

if(S)

Figure 3. Syntax of SCL— composed elements

(ord(ch U C),a,m) — (o', n)

<component(5’, Ch7 Cy q>)7 a, T]> - <U/7 77/> (S-Comp)
<delayl((pi — p0)7U)7 a, 77) - <(7/7 >
<delays((pl s po)7 ’U), ag, 77> - <Ua 77/> (S-dela)
(delay((pi = po),v),a,m) — (o’,n') y
(e;o,m) — (o', 1) (es,o’,n') — (o",1") S-se
(eies, .} — (o) (S-seq)
o(pa) =va o(pp) =vp
ve.value = vq.plus(vq.value, vy.value)
(S-plus)

<plu5(pa,pb — pC)70> 77> - <U[Uc/pc}777>

a(p:)

i

=
(delays((pi — po),v),0,n) — (o, n]vi/Pi]) (S-delay-store)

i) = L .
n(po) (S-delay-nohist)

(delayi((pi — po),v), o,m) — {olv/po],m)

n(pi) = o

) .
<delayl((pi — po)7 ’U)7 o, 77> N <U['Uo/po]; 77> (S-delay-hist)
(

o(p1) =v

(chan(p1 — p2),g7 77> N <0’[1}/p2], 77) (S-chan)
o(pe) =true o(p:) =v -
_if-
<if(pc,pt,p5 — pr)7 o, 77> — <U[U/pr},17> (S | true)
U(Pc) = false o'(pﬁ) = "
(if(pc,pt,pe — pr)7 o, 7]> — <U[U/pr}, 77) (S if false)
v={li=v1,...,ln=vn} L €{l1,...,ln} (Sred)

’U.li = V;

Figure 4. Operational semantics of SCL

2. Type safety, i.e., SCL ensures that a well-typed model model, these types are defined as:
cannot create runtime errors which are due to type fail-
ures. Float := {3X, {value: X,

plus, minus, mult, div : X, X — X,

3. Units, i.e., SCL models can be checked for compati- sqri: & = X,
bility in terms of the physical units that are computed eq,le, gt : X, X — Bool}}
and used in a model. Bool := {3X, {value:X,
and,or : X, X — X,

In this section, we first concentrate on 1. and 2. The in- neg: X — X}}

troduction and elimination rules and some of the subtyping Notably, SCL supports under-specification in models in

rules are omitted here for the sake of brevity, as those are s of nolvmorphic blocks and components. For instance
similar to the standard literature (cf. [13]). polymorp P ' '

a plus block is polymorphic in that it works over differ-
ent value domains, and its output type is determined solely
by the types of input values. A model can thus be made
up only of polymorphic blocks (i. e., under-specified blocks
and components lacking a concrete signature), and the con-

) o) crete instances are then inserted automatically by the type
When components are built for reuse, it is desirable t0 jnference mechanism.

design them so that they can be used in a variety of con-
texts. For example, a sorting algorithm could be used with

any type, as long as an ordering, e.g..0perator, is de- fom atype context’, whenever there is exactly one occur-
fined on that type. Another example would be a component .o e ofp in T (T-port). The set of all bound ports i is

implementing a queue: _this component should _be able t0yefined aslom(T'). And whenever a typing can be derived
queue elements of a static, but arbitrary type. To implements.o i 4 contextl, so can it from any permutation thereof
this in the type systengxistential typeauniversal typesind

subtypingare used.

3.1 Inference of data types and signatures

The (almost) complete set of typing rules of SCL is de-
picted in Fig. 5. A typel” of a portp € P can be derived

(T-perm).

The ports of theplus block are bound to the typ#,

If type S is a subtype of typd’, denotedS C T, this which may be an arbitrary type for which an operaibrs
means that every typ# in a well-typed model could be with signatureX, X — X is defined (T-plus). The rules for
replaced with ary, and the model would still be well-typed. minus, mult, neg, andsqrt, etc. are similar.

(Bounded) universal types are used to introduce new type 0" & component to be well-typed, all of its channels and
variables in the contex® of a component (T-component). Sub-components have to be well-typed (T-component). A
They are denoted byX C 7. X to express that the com- compon_ent is the only_ possibility for the user to define new
ponent can be used for any tyfg which is required to be type variables by addlng them_to the additional context _
a subtype ofl". This can be used to define the types of the The scope of these variables is the component and all its
queue example above. ports and sub-components.

])) . A channel is the “link” between two components. It is
Existential types are used to denote which operatlonswe”_typed if the type of the source pait € P is a sub-

have to be defined on a certain type. In combination with type of the type of the target popb, € P as defined in

universal types and subtyping, the example can now be dey o (1.chan). Naturally a channel can be used for any type

scribed formally: the sort component may be used with any gtisfying the subtype property. It is sufficient to allovbsu

typev.X L T.X as long as an operationl is defined on ying only at channels, i. e., between components, as the

that typel’ = {3Y, {<: ¥ x V" — Bool}}. type system would not be more expressive if we allowed
When a new type such as a record or tuple is defined bysubtyping within blocks.

the users, they can also define operations on that type and

thereby build a new existential type. This new type can now Subtyping. The types in SCL together with the subtyp-

be used with any (prior) component whose type restrictions g rejationC form a lattice. The subtyping rules over this

it satisfies. lattice are depicted in Fig. 5.
SCL requires only a minimal set of primitive typd&xol The subtyping relation is transitive (U-trans) and reflex-
andFloat. Bool is required for comparison arigh blocks, ive (U-refl) and every type is a subtype ahy (U-any).

Float for arithmetics. Other types can be added in a similar An existential type is subtype of another existential type,
manner. As we use only existential types throughout theif their operations are in a subtype relation (U-ex). The

p ¢ dom(T")
Tip:TkEp:T (T-port)
I"+p:T T permutation of I' -
TFp: T (T-perm)
L'F pa,py,pe = T
I'ETC{3X, {value : X,plus: X, X — X
C (3%, { » .5 N

I' = plus(pa, po — pe)

I'F pa,py,pe : T
I'ET C{3X,{value : X,minus : X, X — X}}

'+ minus(pa, py — pe)

(T-minus)
't pe,pp: T T'F pe: Bool
I'-TLC {3X{value : X,eq : X, X — Bool}}
: (T-eq)
I eq(pa,po — pe) :
I'Fpe,pp: T T'Fpe: Bool
T C {3X{value: X,gt: X, X — Bool}}
(T-gt)

N gt(pavpb — pc) :

't pa,pp,v:T
' delay((pa — pb),v)

(T-delay)

Yee C.T,®Fc
Veech.I',®F ¢

T- t
'+ component (S, ch, C, @) (T-component)

I'kpi:S I'kEpe:S THESCT

T-ch
It chan(pi — p2) (T-chan)
I'Fpe:Bool TI'Fps,pe,pr:T .
pe : Boo Pt De, D (T
T = if(pe,pt,pe — pr)
TrTCT T (U-refl)
'FSCT THTCQ
TFSCQ (U-trans)
TFTC Any (U-any)
I'HFSCR U
TF (3X,5] C {3X, R} (U-ex)
{kjelm} 2 {lzeln}
ki =1; S; CT;
o= (U-rcd)

{kj . S;Elm} C {lz . T,Z‘Gl“n}

Figure 5. Typing (T-) and subtyping (U-) rules of SCL

subtyping-relation for records (U-rcd) is used for existen 3.3 Proof for Lemma 1 (Progress)
tial types, since we want
We show this by induction over the rules of the opera-

{3X, {value : X, plus, minus : X, X — X}} tional semantics as shown in Fig. 4.

C {3X,{value : X,plus : X, X — X}}

. . -pl By Lemma 2 n r nd i n
This case occurs, e. g., when one output port is connected té:ase(S plus) By Lemma 2p, andp, are bound iny and
thereforeo (p,) = v, ando(p,) = v, can be eval-

the input ports of alus and aminus block by two chan- uated. As the block and are well typed, the ports

nels. Then the type of that output porF has ?o provigéus Do, b, po and their values,, v, have typel’, with T’ C
and aminus operator, thus the two existential types have to (3X, {value : X, plus : X, X — X}}. Thusu, is an

O s o e EXSEN . i definel opraor an
prop ype Sy yP v, andv, havewvalue fields. Thereforev..value =

possibility to check the compatibility of a component but
can also be used to adjust the typing of the components to Va-plus(va value, v, value) can be evaluated and
u u yping P can be assigned tp. in 0. Thus (plus(p.,py —

make them compatible. This is achieved by inferring a valid
typing from the composed components, if such a typing is pe), ;1) can be evaluated tor{ve /pe],).

possible. case(S-chan) By Lemma 2y, is bound inc and therefore
o(p1) = v can be evaluated. As,p; : T ando are
3.2 Runtime safety well typed, so isv : T. Thuswv can be assigned to
pe in o and with that(chan(p; — p2),0,n) can be
Yet, establishing the compatibility of two components at evaluated tdo[v/p2], n).

compile time is not enough. The main concern is that these))
components remain compatible at runtime. This means thatc@S&(S-delay-hist)(S-delay-nohist) For the load-part of
the type system must ensure that no type errors occur at the delay two cases have to be distinguished: in the
runtime. We therefore have to prosafetyof our static type first tick, the history; is empty, in the following ticks
system. This means that a model, which was well-typed at itis nonempty, according to Lemma 3.
compile-time, remains well-typed during runtime.

In general, to show safety for a type system it is suf-
ficient to showprogressand preservation[13]. Progress
means that the evaluation, based on the operational seman-

subcaseThus in the first tick (S-delay-nohist) can be
applied ag,,, v : T are well typed and can be
assigned tg, in o.

tics, for any well-typed entity is not stuck, i.e., a port can subcaseln all following ticks, rule (S-delay-hist) is
be evaluated and for all entities, there is a rule that can be used. Asn is well-typed,p;, v, are of typeT"
applied. Preservation means that every well-typed ergity r Thusw, can be assigned e, in 0.

mains well-typed after an evaluation step in the operationa
semantics. Syntactic correctness of the model is presumed
here.

Thus(delay,((p; — po),v),o,n) can be evaluated to
(o[v/pol,m) Or (o[ve/po]; m) respectively.

case(S-delay-store) By Lemma 2, is bound ino and
Lemma 1 (Progress)If the model andr and n are well- thereforeo (p;) can be evaluated. As;,v; : T are
typed, then every port can be evaluated and for each entity well typed, v; can be assigned tp; in 7. Thus

there is a rule of the operational semantics that can be ap- (delays((p; — po),v),0,m) can be evaluated to
plied to it. (o3 m[vi/pi])

Before we proceed to show safety, we introduce two lem-
mas which follow as a direct consequence of the syntax and
semantics of SCL.

case(S-if-true)and (S-if-false) By Lemma 2p.., p;, p. are
bound inc and thuss (p..), o(pt), o(pe) can be evalu-
ated. Asp. : Bool, its value either igrue or false.

Lemma 2 For any syntactically correct model, all of the If it is true, rule (S-if-true) is applied iffalse rule
input ports of every entity have been assigned valuessin (S-if-false). Aspy,pe,p, : T are wall typed, the val-
beforee is evaluated. ues of eitherp; or p. can be assigned tp, in o.

Thus (i f (pe, pt,pe — pr),0,n) Can be evaluated to
Lemma 3 In every tick but the first, the input pogt; of (olv/prl;n).

every delay block in bound i
y Y " case(S-seq) To evaluatée, o, n) a matching rule for the

Safety can be shown in terms of two properties of the entity e has to be found. An entity is either a block
type system: progress and preservation. In the following, or a channel. If it is a channel, rule (S-chan), if it
we show both. is a block, the respective block-rule can be applied

as shown above. Thug,o,n) can be evaluated to case(S-delay-hist) Asp;,p, anduv, = n(p;) are of type
(¢’,n'). Fores two cases have to be investigated: T and thusv, can be assigned tp; in ¢ and thus

olve/pol,m) is still well-typed.
subcaself es is an entity sequence, the rules (S-seq) (7lve/pol.) P

can be applied recursively. case(S-delay-store) Ag; andv; are of typel’ andv; can
be assigned t; in . Thus (o, n[v;/p],n) is also

subcaself es is a single entity, one of the entity rules
well-typed.

can be applied as shown fer and with that

(es,0’,n') can be evaluated o,). case(S-if-true)and (S-if-false) Asc is well-typed, p;, pe
andp, are of typeT, as well asv = o(p;) (andv =
o(pe) respectively.) Thugo[v/p.],n) again is well-
case(S-comp) Asthe modelis assumed to be syntactically typed.
correct, it does not contain any cycles without delays
and thus theord function can compute an execution
sequence for all componentsand channelsh. This
execution sequenc@rd(ch U C), o,n) can be eval-
uated to(c’,n’) using rule (S-seq) as shown above.
Thus{component(S, ch, C, ®),o,n) can be evaluated
to (o, 7).

Thus(e; es, o, n) can be evaluated t@”’, ")

case(S-seq) If(o,n) are well-typed, every entitye, o, n)
be evaluated tdo’, ') and(c’, n’) are still well typed
as shown above. I#s is a entity sequence, the rule
(S-seq) is applied recursively, if it is a single entity, the
same argumentation as fercan be used to show that
(c”,n") is also well-typed.

case(S-comp) Theord function only sorts the entities of
a component and does therefore not influence their
typing. Thus the resulting entity sequeneed(ch U
(), o,n) is evaluated to a well-type@’, ") as shown
for rule (S-seq). Thus is rule also is type preserving.

others The cases omitted for brevity can be argued in the
same way as the ones presented above.

Lemma 4 (Preservation) If the model is well-typed and
for an evaluation rulge, o, 1) — (¢’,7) o andn are well- others The cases omitted for brevity can be argued in the
typed so ares’ and . A model is well-typed, if the typing same way as the ones presented above.
rules (see Sec. 3.1) can be applied without getting stuck. 0
o (and n respectively) is well-typed, iff for every binding
o(p) = v, vandp are of the same type, i.e,v : T. Theorem 1 (Safety) This type system is safe, i. e., there are
no type errors at run-time.
3.4 Proof for Lemma 4 (Preservation)
Proof Safety can be shown by proving progress and preser-
Again, we show this by induction over the rules of the Vation [13]. g
operational semantics. In each case we assume tadn
are well-typed and show that and »’ are also well-typed.
If the binding of one port is changed, the binding of the
remaining ports is unchanged, and therefore these remai
well-typed.

Thus, when two components are compatible at compile
time, they remain compatible during run-time. This is es-
rpecially important for embedded systems, as a type error at
runtime might lead to a damage of the system or its envi-
ronment.
case(S-plus) As pu,pp,pe and v,,v, are well-typed,

they of type T, with 7' C {3X, {value : X, 4 Measurement units
plus : X,X — X}}. From that follows that

Va-value, vo-value : X andv, plus : X, X — X. When a port in a model is assigned typleat, all we

;I'hus;c.vc:jlue_ - lm'pl;fts(vgz;m_lrlﬁe’ vp-value) s (.)f know is the range of values for that port. It does not say
s%illjlewelﬁtr;/pléc dIS also of typel’. Thus{a[ve/pe].n) 1S 44 thing about what these values actually represent in the

real world. A model in which two integers, say, one repre-
case(S-chan) Ifp; : S andp, : T thenv = o(p1) : S senting apples and the other oranges, are added would still
with § C 7. Sow can be assigned tp, and thus P€ well typed. Butin many cases it is not desirable that ap-

(o[v/ps],) is also well-typed. ples gn(_d oranges can be added. In such acase, additional_ se-
mantic information must be represented in the model. This
case(S-delay-nohist) As the model is well-typed andv is achieved usingneasurement units
are of typeT” and therefordo[v/p,], n) again is well- Let U denote the set of all (measurement) units de-
typed. fined for a model. Which units are used within a model

depends on the application domain. For embedded sys-adjacency matrix does not have to be symmetric to satisfy
tems the Sl units [12] could be used, as many physicalthese constraints.

values are processed in such an environment, Ues
{s,m,kg,A,K, mol,cd}. The functiony : U — Zis a
mapping from unitU to integral number& representing
the exponent of the respective unit. This is necessary a
mixed units, such ascceleration = m/s%, can occur as

well. This example would be represented,gsn) = 1, nents of the conversion graph: Two units, ., are con-

p(s) = —2andu(u) = 0 forallremaining unitas € U. yeniple, if both belong to the same connected component
To be able to discern between different representations ¢ i graph defined by the adjacency mattix

of the same unit, e. g., meters, inches, and miles, these can o concept of units is not limited to the conversion

Pe encPded as separate units, all of the same dimensiop,seq on scalar functions, as in [8], but may also be applied
length”. It was just this mismatch between the metric and 4 arpjitrary conversion functions, e. g., for Celsius, Kelv

the imperial system of units that led to the loss of the Mars
Climate Orbiter [7]. But a mismatch of the units of a model

Lemma 5 Two unitsuq, uo are convertible if there exists a
directed path in the adjacency matrikfrom g1 to o

Based on the adjacency matrix, the sets of convertible com-
ponents could also be defined over the connected compo-

and Fahrenheit:

may not only be detected automatically, but in some cases I C | F | K
even be resolved automatically, as some units can be con- C T (x—32)/1,8 [z —273
verted into each other, e. g., meters and miles. For this au- F | (z*1,8) +32 T T
tomatic conversion, the function: U x U — component K z + 273 N i
is introduced.
The component always has the same signature o Furthermore, the units are not restricted to physical units

with typesi,o : VX C Float. X. Thus the conversion but may also be used, e. g., to convert between different cur-

components can be type-checked with the same rules as theencies. Thus the choice of units depends largely on the

rest of the model. If two units cannot be converted, the application domain.

function returnsL.. In contrast to [8] the units are treated separately from the
The functionr can also be interpreted ascanversion type system. That is because units (in contrast to types) do

table!, as illustrated in an example with different units for not have an influence on the system behaviour at runtime.

the dimension length: They are only used to check the consistency of the model.
Thus we do not want to argue about them in the operational
| m | cm | inch | mie semantics and thus also in the safety proof.

m 1 2 % 100 1 x/1609 The inference of units in a model is similar to the type
cm x/100 1 1 1 inference. Thus the same notation is used as for the type
inch T L 1T x/63.360 system: In the unit contexk port p has unity is written as
mile || = * 1609 1 Z * 63.360 T A+ p: p. Again for the different entities of an SCL model,

different rules are required, the rules (T-port) and (Thper
The conversion table does not have to be fully spec- apply here as well. To be able to infer the units in a model,
ified, since the conversion from cm to inch can be derived there are several operations required.oThese are based
from the table above over m and mile. To achieve that, theon [8]. Let n € Z in:
conversion table can be interpreted asoaversion graph

by creating a node for each table entry and connecting the #1 = H2 — Vu €U p(u) = pa(u)
nodes whenever the entry of the conversion table isinot ~ F1 = H2 "l <= Vu € U. pn(u) = po(u) + ps(u)
Thus the adjacency matrit for this graph is given as: pa = p2 = VueU p(u) =n-psz(u)

unitlesgy) < YueU. pu(u) =0

0 if T(ul’,M) =4 The test for equalitys; = ps is required to check the
1 otherwise consistency of the model. The addition of unjits - p. is
required for the mathematical multiplication and division
operators, i. e., when two values are multiplied, theiranit
are added. For the division operator units need to be in-
vertedy . For the square root operator every unit will be
divided by 2, i.e.u?. The predicate unitlegg) is true if a
port does not have any units.

170 make the table more concise, its components are represented a 1 N€ blocks in SCL are polymorphic in the sense that they
mathematical functions, rather than SCL components. can be used for any unit. There are only restrictions on

Apr, p2) = {

For the functionr to be consistent, it is required that, (1)
if there is a path between any two unjis and u», there
must also be a path betwegn and 1, (2) identical units
are not converted, i. evyu. 7(u, 1) = L and (3) the conver-
sion components do not contain any delays. Note that the

A& pa,po,pe: 1 A pt,pe,pr i

(D-plus) i
A+ pluS(pavpb — pc) A+ ite(pmpt,pe — pr) (D If)
Abpa:pia AFpy:pe AbFpe:pia- (D-mult) A Doy Db,V i
A+ mult(pa, py — pe) . (D-delay)
“ ¢ A+ delay((pa — pb),v)
Abpaipa Abpyipy AFpe:pa-p,' (D-dv) Vee C.AFc
At div(pa, pp — De) Ve € ch. AFc¢ (D-net
Abpe:p® Abpyin A+ component(S, ch, C, ®)
AC sorl (D-sqrt)
sqrt(pa — pr) Abpripr AFp:pe
A pa,po: b (D-eq) 1 # p2 — convertible(pi, p2) (D-chan)
A& eq(pa,po = pe) A chan(py — p2)
Figure 6. Unit inference rules of SCL
the allowed combination of units. The rules are depicted
in Fig. 6. p q
The plus block only makes sense, if all ports have the -
same units. The rule fominus is identical to (D-plus) o o e
modulo renaming. At thenuit block, the units have to m mile inch

be added, at théiv block subtracted as defined in rules
(D-mult) and (D-div). At thesqrt block (D-sqrt), the expo-
nents of the units of the input port must be divisible by two,
since only integral numbers are allowed as exponents.

Attheeg block, it does not make sense to compare valuesand linking the conversion components along the shortest
with different units (D-eq). path betweeam andinch in the conversion graph. The ex-

Analogue to the typing rules, a component is unit- ample in Fig. 7 illustrates the components inserted for this
consistent, if its channels and subunits are unit-condiste the conversion.

(D-net). The conversion of units is done at the channels,

connecting ports with different units (D-chan). The func- 5 Examples

tion convertible(uy, p2) is true, iff there exists a path from
1 1O pio inT.

Since units only make sense on numerical types, all ports
with units must have a subtype Bfoat. Thus for all ports
with typeI" = p : T and unitA + p : p the following
property must hold:

Figure 7. Conversion from cm to inch

To illustrate the static interfaces of SCL, a case study is
presented. Here themaining rangegunction was chosen.
It is a part of the on-board computer of modern vehicles.
Based on the mass of fuel used over a certain distance and
the remaining fuel mass, it estimates the remaining range of

—unitlesgy) — I' - T C Float the vehif:le. o
As this calculation is not always exact and to have some

At compile time, after types and units have been checkedsafety if the driver is misjudging the distance to the next

and inferred successfully, this property is verified by the gas station, usually a safety of 5 liter is deducted from the

type checker. This provides the ability to use units not only abount of remaining fuel. So that, if the remaining range

on a single type, as in [8], but also on any subtyp€&loét. reaches zero, there will still be about 5 liter of fuel in the
The information about units is removed from the model tank. A SCL model of the remaining range function is pre-

at compile time, since it is no longer needed. The only thing Sented in Figure 8. The internal ports in this figure are num-

that must remain in the model are components that convertbered fromp; to po;.

between the different units. These components are gener-

ated automatically at compile time. Since the unit conver- 5.1 Units

sion only occurs at channels with different units, only thes

channels need to be modified for unit conversion. These The units of the external ports and the constants have

components are generated by replacing the original channebeen specified by the user. In this example, these are:

10

remaining_fuel

remaining_range

used_fuel

distance

14
12 [
13 [
Figure 8. The remaining range case study
Port 14
remaining_fuel | [l]
used_fuel 7] py = gy =
d'zs%‘ance [m] = Mused-fuel 'M;ilstance =
remaining_range [m] = [l] : [m]_l =
pr [l] B -1 -
P11 (1] = U-mm=
= [tm™]

The units ofpg can be derived in the same way. The
Inference ofuy4 = [I] is not shown here.

To illustrate the inference of units, the poyig, p4, ps
and ps are regarded in detail, since in this example only

— -l
the division blocks change the units. At the other blocks, He = 4 “571
the units are simply propagated from the input ports to the = Hia-H3 =
output ports. = [-pm =
= []-[7'm] =

The units of portps are derived byus = 1 - 5 ', as
defined in rule (D-div). The portg; and p, must have = [m]
the same units as the portsed_fuel and respectively
distance as these are connected by a channel (D-chan)). The channel between portg and remaining_range
Therefore the units gf; are infered tdm—!: are consistent considering their units, as both have[uiit

11

5.2 Types

In this example, the user has only specified the types of
the external ports and the constants. The types of the re-
maining ports are infered by the type checker.

p7 : Float
P11 - Float

In the following, the types of the portgss, pg, p1g Of
the minus block are examined in more detail. The rule
(T-minus) states, that all ports must have the same type
ps, P9, p1o - 1 and that a minus operator must be defined
on that typel' C {3X, {value : X, minus : X, X — X}}

As there exists a channel between pgrts: Float and
ps and according to rule (T-chafi) must be a supertype of
Float, i.e. Float C 7. With rule (U-trans) followsFloat C
{3X, {value : X,minus : X,X — X}}. This can be
shown by applying the the definition éfoat and the rules
(U-ex) and (U-rcd).

Another example are the ports; andp;s. From the
rules (T-gt) and (T-if) follows thap,7,p18 : Bool. With
rule (T-chan) follows thaBool T Bool, which is can be
concluded from rule (U-refl).

Float[m]

Int[m]

Float[m]

Figure 9. Type and unit inference

In the present form, our approach can be realised with

unification in only linear time w.r.t. the size of the model
under scrutiny. However, if additional types, such as struc
tured types (tuples, lists, etc.) are introduced to the mode
the algorithm will be exponential in the worst-case. This is
due to the fact that a component in a model could take as
input, say, a tuple, and return, say, a tuple of tuples, and so
forth.

Acknowledgements. The authors thank Stefan Berghofer

The types of the remaining ports of this example can be for helpful discussions regarding the subtleties of type sy
infered in the same way. To instantiale the existential$ype tems, and for his comments on draft versions of the paper.

throughout the model, hefdoat can be used as it provieds
all required operators.

6 Conclusions

The framework of static compatibility presented in this
paper comprises three different aspects: (1) data typdehec
ing, (2) unit checking, and (3) automatic data type and unit
inference. This framework enables users to define syntac-
tic interfaces of components by abstracting from concrete
types and thereby allows a component to be (re-) used in
several concrete contexts (i. e., polymorphic signatur&s)
concluding abstract example of type and unit inference is
depicted in Fig. 9, assuming that the environment provides
the appropriate types and units.

This general framework can easily be adopted to other
component-based languages exhibiting different syntex an
semantics, such as AutoFocus or MATLAB/Simulink, for
instance. Notably, our notion of component compatibility
can be checked statically, i. e., at compile-time, and there
fore does not negatively affect runtime efficiency. More-

over, we have shown that this scheme does not leave space

for subtle type-errors that may occur at runtime, and which

are often experienced with standard component-based de-

sign and modelling tools that lack mechanisms of type in-
ference and polymorphism.

12

References

[1] ClawZz—The semantics of Simulink diagrams. Whitepaper,
2003.www.lemma-one.com/clawz _docs .

[2] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le

Guernic, and R. de Simone. The synchronous languages 12

years laterProceedings of the IEE®1(1), January 2003.

G. Berry. Proof, Language and Interaction: Essays in Hon-

our of Robin Milner chapter The Foundations of Esterel.

MIT Press, 2000.

M. Broy, F. Huber, and B. Scétz. AutoFocus — Ein

Werkzeugprototyp zur Entwicklung eingebetteter Systeme.

Inform., Forsch. Entwick].14(3):121-134, 1999.

P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis,

and P. Niebert. From simulink to SCADE/Lustre to TTA: a

layered approach for distributed embedded applications. In

ACM SIGPLAN Conf. on Languages, compilers, and tools

for embedded systemSCM Press, 2003.

L. de Alfaro and T. A. Henzinger. Interface automata. In

Proc. 8th European software engineering confereridew

York, NY, USA, 2001. ACM Press.

E. E. Euler, S. D. Jolly, and H. H. Curtis. The failures of the

mars climate orbiter and mars polar lander: A perspective

from the people involved. I®Proc. Guidance and Control

American Astronautical Society, 2001.

[8] A. J. Kennedy. Relational parametricity and units of mea-
sure. InProc. ACM SIGPLAN-SIGACT symposium on Prin-
ciples of prog. langACM Press, 1997.

(3]

(4]

(5]

(6]

(7]

9]

(10]

(11]
(12]
(13]

(14]

K. Knight. Unification: a multidisciplinary surveyACM
Comput. Sury.21(1):93-124, 1989.

C. Kuhnel, A. Bauer, and M. Tautschnig. Compatibility and
reuse in component-based systems via type and unit infer-
ence. InProceedings of the 33rd EUROMICRO CONFER-
ENCE on Software Engineering and Advanced Applications
2007.

E. A. Lee and Y. Xiong. System-level types for component-
based design. IEMSOFT’01 Springer, 2001.

NIST. The NIST reference on Constants, Units and Uncer-
tainty. physics.nist.gov/cuu/Units

B. C. PierceTypes and programming languag®al T Press,
Cambridge, MA, USA, 2002.

G. D. Plotkin. The origins of structural operational seman-
tics. Journal of Logic and Algebraic Programming0-
61:3-15, 2004.

13

